Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano
1.
arxiv; 2021.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2106.00072v2

RESUMO

Recently, the Centers for Disease Control and Prevention (CDC) has worked with other federal agencies to identify counties with increasing coronavirus disease 2019 (COVID-19) incidence (hotspots) and offers support to local health departments to limit the spread of the disease. Understanding the spatio-temporal dynamics of hotspot events is of great importance to support policy decisions and prevent large-scale outbreaks. This paper presents a spatio-temporal Bayesian framework for early detection of COVID-19 hotspots (at the county level) in the United States. We assume both the observed number of cases and hotspots depend on a class of latent random variables, which encode the underlying spatio-temporal dynamics of the transmission of COVID-19. Such latent variables follow a zero-mean Gaussian process, whose covariance is specified by a non-stationary kernel function. The most salient feature of our kernel function is that deep neural networks are introduced to enhance the model's representative power while still enjoying the interpretability of the kernel. We derive a sparse model and fit the model using a variational learning strategy to circumvent the computational intractability for large data sets. Our model demonstrates better interpretability and superior hotspot-detection performance compared to other baseline methods.


Assuntos
COVID-19
2.
arxiv; 2020.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2009.07356v4

RESUMO

We present an interpretable high-resolution spatio-temporal model to estimate COVID-19 deaths together with confirmed cases one-week ahead of the current time, at the county-level and weekly aggregated, in the United States. A notable feature of our spatio-temporal model is that it considers the (a) temporal auto- and pairwise correlation of the two local time series (confirmed cases and death of the COVID-19), (b) dynamics between locations (propagation between counties), and (c) covariates such as local within-community mobility and social demographic factors. The within-community mobility and demographic factors, such as total population and the proportion of the elderly, are included as important predictors since they are hypothesized to be important in determining the dynamics of COVID-19. To reduce the model's high-dimensionality, we impose sparsity structures as constraints and emphasize the impact of the top ten metropolitan areas in the nation, which we refer (and treat within our models) as hubs in spreading the disease. Our retrospective out-of-sample county-level predictions were able to forecast the subsequently observed COVID-19 activity accurately. The proposed multi-variate predictive models were designed to be highly interpretable, with clear identification and quantification of the most important factors that determine the dynamics of COVID-19. Ongoing work involves incorporating more covariates, such as education and income, to improve prediction accuracy and model interpretability.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA